quinta-feira, 12 de setembro de 2019


Na química, a lei de Raoult (pronuncia-se "Raul") é dedicada a François-Marie Raoult (1830-1901) e afirma que a pressão parcial de cada componente em uma solução ideal é dependente da pressão de vapor dos componentes individuais e da fração molar dos mesmos componentes.[1]
Uma vez alcançado o equilíbrio na solução, a pressão de vapor total da solução é:
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
e a pressão de vapor individual ou pressão parcial de cada componente é
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde
  • (Pi)puro ou Pi* é a pressão de vapor do componente puro
  • Xi é a fração molar do componente na solução
Como consequência, com o aumento do número de componentes em uma solução, a contribuição individual de cada componente na pressão de vapor diminui, já que a fração molar de cada componente diminui a cada acréscimo de um novo componente. Se um soluto puro tem pressão de vapor zero (isto é, não evapora) e é dissolvido em um solvente, a pressão de vapor da solução final (solvente-soluto) será menor que o do solvente puro.
Esta lei é válida estritamente apenas se a ligação entre, por exemplo, as moléculas de diferentes líquidos em uma mistura for qualitativamente igual à ligação entre moléculas dos próprios líquidos individualmente (que é a condição de uma solução ideal).
Portanto, a comparação entre valores de pressões de vapor reais e valores preditos pela lei de Raoult permite obter informações sobre a força relativa da ligação entre os líquidos presentes na mistura estudada.

Por exemplo, se o valor real for menor que o valor esperado, é porque menos moléculas escaparam da solução líquida para a fase vapor; isto pode ser explicado ao afirmar que a força de ligação entre as moléculas dos diferentes líquidos é mais forte do que a ligação dentro dos próprios líquidos individualmente, de forma que menos moléculas têm energia suficiente para escapar à fase vapor. Se, porém, o valor real é maior que o valor esperado, é porque mais moléculas escaparam para a fase vapor devido à ligação mais fraca entre as diferentes moléculas da mistura.
A partir da Lei de Raoult também é possível observar que em uma solução ideal de dois líquidos voláteis, a pressão de vapor total (em uma dada temperatura) varia linearmente com a composição da solução de P2* a P1* quando X1 varia de 0 a 1.





lei de Joule (também conhecida como efeito Joule ou efeito térmico) é uma lei física que expressa a relação entre o calor gerado e a corrente elétrica que percorre um condutor em determinado tempo. Um resistor é um dispositivo que transforma a energia elétrica integralmente em calor.[1] O nome é devido a James Prescott Joule (1818-1889) que estudou o fenômeno em 1840 e, um ano mais tarde, publicada na Philosophical Magazine, pela Royal Society.[2]

    Definição[editar | editar código-fonte]

    Ela pode ser expressa por:[1]
    onde:
    Se a corrente não for constante em relação ao tempo:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Termodinâmica[editar | editar código-fonte]

    Ver artigo principal: Termodinâmica
    Quando uma corrente elétrica atravessa um material condutor, há produção de calor. Essa produção de calor é devida ao trabalho realizado para transportar as cargas através do material em determinado tempo.

    Unidade joule[editar | editar código-fonte]

    A lei de Joule está relacionada com a definição de joule onde:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde:
    • W é o trabalho elétrico (em joule).
    • Q é a carga (em coulomb).
    • U é a diferença de potencial (em volt).

    Teoria cinética[editar | editar código-fonte]

    A nível molecular o aquecimento acontece por causa da colisão dos elétrons com os átomos do condutor, em que o momento é transferido ao átomo, aumentando a sua energia cinética (ver calor).
    Podemos dizer, portanto, que, quando o elétron colide com os átomos, fazem com que os núcleos vibrem com maior intensidade. O grau de agitação molecular é chamado de temperatura, ou seja, quando os elétrons colidem, aumentam a energia cinética dos átomos, sua temperatura.

    Efeito de Joule[editar | editar código-fonte]

    A passagem da corrente elétrica num condutor provoca o aumento de temperatura liberando calor.[3] A energia elétrica que se transforma em energia calorífica num receptor ou condutor, é diretamente proporcional à resistência elétrica, ao quadrado da intensidade da corrente que o percorre e ao tempo de passagem da corrente. Esta lei é traduzida matematicamente pela seguinte expressão[3]:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Em que:
    • W - é o trabalho ou a energia dissipada por efeito joule (em joules).
    • R - é a resistência elétrica (em ohms).
    • I - é a intensidade de corrente que percorre o receptor ou condutor (em ampères).
    • t - o tempo de passagem da mesma corrente (em segundos).

    Vantagens e inconvenientes[editar | editar código-fonte]

    Vantagens[editar | editar código-fonte]

    A corrente elétrica ao atravessar um condutor, provoca nele um aumento de temperatura. Este efeito é aproveitado em ferros de passaraquecedoressoldadores elétricossecador de mãosfogõesfornosiluminação, proteção de instalações elétricas (fusíveis e disjuntores), etc.[3]

    Inconvenientes[editar | editar código-fonte]

    Em grande parte de aplicações da energia elétrica, a produção de calor correspondente a perdas e em algumas situações pode originar danos mais ou menos graves, nomeadamente quando se verifica um curto-circuito ou maus contatos. Daí há necessidade de utilizar condutores devidamente calibrados para a corrente que vão suportar, bem como prever as proteções e isolamentos convenientes.[4]

    Potência dissipada[editar | editar código-fonte]

    Nos resistores elétricos pode-se calcular a potência dissipada utilizando a Lei de Joule:

    x


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D



    Lei de Stefan-Boltzmann (mais conhecida como Lei de Stefan) estabelece que a energia total radiada por unidade de área superficial de um corpo negro na unidade de tempo (radiação do corpo negro), (ou a densidade de fluxo energético (fluxo radiante) ou potencia emissora), j* é diretamente proporcional à quarta potência da sua temperatura termodinâmica T:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    constante de proporcionalidade (não é uma constante fundamental) é chamada constante de Stefan-Boltzmann ou constante de Stefan σ. A lei foi descoberta de jeito experimental por Jožef Stefan (1835-1893) no ano 1879 e derivada de jeito teórico no marco da termodinâmica por Ludwig Boltzmann (1844-1906) em 1884. Boltzmann supôs uma máquina térmica ideal com luz como substância de trabalho semelhante a um gás. Esta lei é a única lei da natureza que leva o nome de um físico esloveno. Hoje pode-se derivar a lei da Lei de Planck sobre a radiação de um corpo negro:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    e é válida só para objetos de cor negra ideal, os perfeitos radiantes, chamados corpos negros. Stefan publicou esta lei o 20 de março no artigo Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (Das relações entre radiação térmica e temperatura) nos Boletins das sessões da Academia das Ciências de Viena.

    Em outubro de 1900, Planck convidou para um chá em sua casa, Heinrich Rubens (1865 – 1922) que, juntamente com Ferdinand Kurlbaum (1857 – 1927), obtivera dados de alta precisão da radiação do corpo negro, especialmente nas frequências onde a Lei da Radiação de Wien falhava. Horas depois que seu convidado foi embora, Planck intuiu uma expressão que se ajustava perfeitamente aos dados experimentais, a Lei de Planck, da radiação térmica:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde
    I = radiância espectral / Js−1, m−2 , sr−1 ,Hz−1
    ν = frequência / Hertz
    T = temperatura do corpo negro / kelvin
    c = velocidade da luz / metros - segundo
    e = número de Euler / adimensional
    Baseado na Termodinâmica e nos estudos de mecânica estatística de Boltzmann, Planck desenvolveu seu modelo teórico. Boltzmann tinha um trabalho com átomos que era matematicamente semelhante. Nele, as energias dos átomos eram múltiplos inteiros de uma energia mínima ε. Planck fez uma analogia com os osciladores das paredes do forno e obteve, estupefato, o seguinte resultado: para uma determinada frequência ν, a energia dos osciladores somente poderia ser um múltiplo inteiro de hν, onde h = 6,63 x 10−34 j.s j.s é a constante de Planck. A energia não era absorvida ou emitida de modo contínuo, mas apenas em múltiplos de uma unidade mínima, que dependia da frequência da radiação. Ou seja, se estamos trabalhando com apenas uma frequência (ν), toda a energia que o corpo negro pode absorver ou emitir tem que ser múltiplo inteiro de . O quantum de energia dos osciladores deveria ser hν. Devido à pequeníssima magnitude da constante de Planck, não notamos isso no nosso dia-a-dia.[2]
    Devido à natureza conservadora de Planck era muito difícil pensar que a energia, grandeza fundamental de toda a Física, que todos pensavam que podia ser emitida ou absorvida continuamente, pudesse ser discreta, ou seja, emitida ou absorvida apenas em unidades múltiplas de um certo valor mínimo. Deve ter sido muito difícil para Planck admitir sequer essa possibilidade. Mas, mesmo assim, Planck publicou seu trabalho, e numa das mais magníficas páginas da história da ciência, deu início ao que chamamos hoje de Mecânica Quântica.